

CARACTERIZAÇÃO DE TOCHAS DE PLASMA UTILIZADA PARA CRESCIMENTO DE FILMES SUPERDUROS

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Ubirajara Oliveira de Sá ETEP Faculdades São Jose dos Campos, (Bolsista PIBIC/CNPq). E-mail: ubirajaradesa@yahoo.com.br

Dra. Patrícia Regina Pereira Barreto LAP/CTE/INPE (Orientadora) E-mail: patricia@palsma.inpe.br

Julho de 2006

A minha família E a todos os meus amigos

AGRADECIMENTOS

Agradeço a todas pessoas que me apoiaram neste trabalho.

Ao Conselho Nacional de Desenvolvimento científico e tecnológico – CNPq, pela oportunidade de participar como bolsista do projeto de iniciação científica.

Ao Instituto Nacional de Pesquisas Espaciais – INPE pela oportunidade de estudos e utilização de suas instalações.

À orientadora Dra. Patrícia Regina Pereira Barreto por compartilhar conhecimentos, pela orientação e apoio na realização do trabalho.

A minha família por acreditarem na minha decisão.

RESUMO

Este trabalho iniciado em agosto de 2004 tem como objetivo o projeto de um novo canhão para a tocha de plasma utilizada na sintetização de filmes super duros. Para isto é necessário encontrar a região ótima de operação do sistema, através da caracterização do plasma, via sondas eletrostáticas, curvas de "breakdown" e características de descarga, para diferentes configurações de eletrodos.

Numa primeira fase do trabalho, foi remontado o sistema de vácuo que estava desativado, com a inclusão de uma bomba "roots" e medidores de pressão deste a faixa de 2atm até 10⁻³mbar. O sistema de vácuo foi caracterizado através das curvas de pressão em função do tempo e apresentadas no relatório anterior. Na segunda fase do trabalho, o sistema elétrico da tocha de plasma foi modificado, com a alteração do filtro RLC. Com o sistema de vácuo funcionando e o novo circuito elétrico instalado, iniciou-se os disparos da tocha de plasma, considerando três configurações diferentes de catodos para um mesmo anodo.

A aquisição de dados foi feita conectando o experimento a um osciloscópio Textronics TDS3014B e este ao microcomputador onde as informações ficam armazenadas para posteriormente serem analisadas. Foram coletados três canais no osciloscópio, um representa a queda de tensão entre os eletrodos, e os outros dois representam a queda de tensão em resistências padrão, que serem utilizados na determinação da corrente da descarga. Esses dados são importados diretamente em programas gráficos para a construção das curvas características. Utilizando um programa em "Fortran", escrito para esta finalidade, foi determinado a média e o desvio padrão dos dados coletados para cada uma das configurações dos eletrodos. Também, foram determinadas as curvas de "Breakdonw" (ruptura da descarga) para os diferentes catodos e verificou-se que tensão mínima necessária para iniciar a descarga com o catodo de 1/4" de tungstênio é de $617,5 \pm 18,6V$, enquanto que para o catodo de 1/8" de tungstênio esta tensão cai para $345,4 \pm 17,2$ V, e a curva característica da descarga (V × I - tensão versus corrente) nestes dois casos é na faixa de $50V \times 20 - 70A$. A tensão de ruptura para o catodo de 10mm de molibdênio é de $328.5 \pm 81.1V$ e mesma condição de V × I. A partir destas curvas será possível escolher algumas condições para a determinação dos parâmetros de plasma.

Numa terceira etapa do trabalho, iniciaram-se os estudos de equilíbrio termodinâmico da descarga, considerando a descarga de N₂ e NF₃, de interesse no crescimento de filmes superduros. Neste estudo foi considerada a reação $\alpha N_2 + \beta NF_3 =$ Produtos, e as frações molares dos produtos foram determinadas utilizando o programa STANAJN para diferentes valores de α e β e condições de pressão e temperaturas típicas do experimento. Depois utilizando-se de um código cinético, ChemKin, foi determinada a composição da fase gasosa e comparada com os dados de equilíbrio.

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO	1
1.1Objetivos do trabalho	2
CAPÍTULO 2 – TRABALHO REALIZADO	3
2.1Circuito elétrico	3
2.2Curvas características	4
CAPÍTULO 3 – MODELO TEÓRICO	9
3.1 Equilíbrio termodinâmico da descarga	12
3.2 Cinética de reação	13
CAPÍTULO 4 – CONCLUSÃO	17
REFERENCIAS BIBLIOGRÁFICA	18
LISTA DE FIGURAS	
Figura 1: Desenho esquemático Figura 2: Vista geral do experimento Figura 3: geometrias combinadas anodo/catodo Figura 4: circuito elétrico de alimentação da descarga com o filtro RLC Figura 5: Tocha de plasma em funcionamento	1 1 2 3 5
Figura 6: sistema de aquisição de dados: tocha de plasma \rightarrow osciloscópio com um endereço de IP \rightarrow microcomputador	5
Figura 7: (a) tela do osciloscópio conforme aparece no explore do microcomputador, (b) tela do osciloscópio para salvar os canais de interesse Figura 8: tensão em cada canal do osciloscópio Figura 9: curvas de "Breakdown"	6 7 8
Figura 10: (a) curva característica da descarga, (b) zoom da região de alta corrente com barras de erro típica. Figura 11: velocidade e temperatura da tocha de plasma em função da	10
corrente elétrica	11
Figura 12: dissociação do NF ₃	12
Figura 13: frações molares de equilíbrio em função da razão de fluxo de gás Figura 14: Fração molar obtidas do código cinético em função do tempo de	13
residência	15
residência de 25µs	15

Figura 16: Razão entre as frações molares obtidas pelo código cinético e de	
equilíbrio em função das razões do fluxo de gás	16
LISTA DE TABELAS	
Tabela 1: geometria dos eletrodos	1
Tabela 2: valores das resistências utilizadas	4
Tabela 3: condições experimentais	4
Tabela 4: Mecanismo cinético para o sistema N/F	14

Capítulo 1

Introdução

Existem várias formas de se caracterizar uma descarga elétrica, tais como, determinando a curva característica da descarga ($V \times C$) ou determinando os parâmetros de plasma via sondas eletrostáticas, já descritas nos relatórios anteriores. Estas duas técnicas acopladas visam determinar a região ótima de operação da tocha de plasma do LAP.

A figura 1 mostra o desenho esquemático do experimento de tocha de plasma, a figura 2 mostra a fotografia com vista geral do aparato.

Figura 1: Desenho esquemático

Figura 2: Vista geral do experimento

Várias geometrias de anodo/catodo foram utilizadas nesta etapa do trabalho, conforme tabela 1. A figura 3 ilustra seis das nove combinações anodo/catodo possíveis.

Catodo	Anodo		
1. W/Th de 1/8"	1. $\phi = 4$ mm, A ₁ = 120°, L = 4mm		
2. W/Th de 1/4"	2. $\phi_1 = 0.76$ mm, $A_1 = 120^\circ$, $A_2 = 60^\circ$,		
	$L = 0,25mm, \phi_2 = 12mm$		
3. Mo de 10mm	3. $\phi_1 = 0.76$ mm, $A_1 = 60^\circ$, $A_2 = 40^\circ$,		
	$L = 0,25mm, \phi_2 = 12mm$		

Tabela 1: geometria dos eletrodos

Figura 3: geometrias combinadas anodo/catodo

1.1 Objetivo do trabalho

O objetivo deste trabalho é automatizar o sistema de diagnóstico de plasma para o experimento tocha de plasma do LAP, no que se refere à construção das curvas características da descarga e medidas de sondas eletrostáticas.

Capítulo 2

Trabalho realizado

2.1Circuito Elétrico

Durante a segunda etapa do trabalho de iniciação científica iniciado em agosto de 2005, concluiu-se a montagem do equipamento da tocha de plasma (figuras 1 e 2), com a instalação de um novo circuito elétrico, figura 4.

Figura 4: circuito elétrico de alimentação da descarga com o filtro RLC

Para a montagem do banco de resistores foi construídos um "rack" com quatro bandejas de resistores (resistências equivalentes de 3,207; 2,201; 1,548 e 1,068 Ω) ligadas em séries e cada bandeja contendo dez resistores ligados em paralelo, além destas, existem mais duas bandejas uma com o banco de capacitores de 2,5mF/350V e resistências de 3,3k Ω /100W e a outra com o indutor de 3,98mH, resistências de 15 Ω /100W e o varistor S20K/385A. Os capacitores e indutor fazem parte do filtro RLC que tem por finalidade diminuir o "ripple" da fonte que passa de 5% para 0,25%, enquanto que as resistências (R_{eq} = 8,024 Ω) auxiliam a estabilizar a descarga e principalmente de limitar a corrente de entrada. A tabela 2 especifica os valores das resistências utilizadas, bem como das equivalentes, de acordo com as bandejas, e indicadas na figura 4. Infelizmente estas resistências não são suficientes e ocorre um superaquecimento nas mesmas, para sanar este problema está sendo comprada uma carga resistiva de 10 Ω e 25kW para substituir as mesmas.

Resistores	Bandeja 1	Bandeja 2	Bandeja 3	Bandeja 4		
1	11,1	15,3	22,4	32,2		
2	10,7	15,4	22,3	32,2		
3	10,5	15	22,6	32,1		
4	10,6	15,3	21,6	31,7		
5	10,7	16,1	22	32,2		
6	10,5	15,4	22	32,5		
7	10,7	15,2	22	31,9		
8	10,4	15,2	22	31,6		
9	11,1	16,3	21,6	32,4		
10	10,6	15,7	21,7	32		
R _{eq}	1,068 Ω	1,548Ω	2,201 Ω	3,207Ω		
R _{eq} total	8,024 Ω					

Tabela 2: valores das resistências utilizadas

2.2Curvas Características

Foram realizados vários disparos com a tocha de plasma (figura 5), utilizando-se as três configurações de catodos e o anodo 1 (tabela 1). As pressões na câmara de vácuo (medidor 2), na câmara de descarga (medidor 1) e fluxo de nitrogênio são apresentadas na tabela 3 e na figura 3 de acordo com as diferentes configurações anodo/catodo.

Catodo	Pressão [mbar]			Fluxo de N ₂
	Medidor 1		Madidar 2	[slm]
	antes	depois	Wiedidor 2	
1/8" W/Th	118.4	167.0	7.82	4.84
1/4" W/Th	116.4	173.0	7.81	4.86
10mm Mo	112.2	210.0	7.77	4.82

Tabela 3: condições experimentais

Da tabela 3 pode-se observar que ocorre um aumento da pressão quando existe a descarga elétrica, e este aumento é maior para o catodo de maior diâmetro, este fato é previsto teóricamente¹.

Figura 5: Tocha de plasma em funcionamento

A aquisição de dados é feita conectando o experimento a um osciloscópio Textronics TDS3014B e este ao microcomputador (figura 6) onde as informações ficam armazenada. O osciloscópio tem um endereço de IP e "conversa" com o PC através da rede. A aquisição de dados é feita via o explore do PC, conforme ilustra a figura 7.

Figura 6: sistema de aquisição de dados: tocha de plasma → osciloscópio com um endereço de IP → microcomputador

Figura 7: (a) tela do osciloscópio conforme aparece no explore do microcomputador, (b) tela do osciloscópio para salvar os canais de interesse.

A queda de tensão entre os eletrodos é coletada num dos canais do osciloscópio enquanto que a corrente é calculada através da diferença de tensão nas extremidades das resistências padrão e dividindo isto pelo valor da resistência. Coletando, portanto, três canais no osciloscópio, conforme figura 8. Esses dados são importados diretamente em programas gráficos para a construção das curvas características. Foi escrito um programa em "Fortran" para calcular a média e o desvio padrão dos dados coletados. Foram necessários de quatro a seis disparos para a construção de uma curva característica para cada configuração anodo/catodo.

Inicialmente, foram determinadas as curvas de "Breakdonw" (ruptura da descarga) para as três configurações e são mostradas na figura 9. A tensão mínima necessária para iniciar a descarga é maior para o catodo de 1/4" de tungstênio/tório, porém a tensão diminui para o catodo de 10mm de molibdênio.

Tempo [ua]

Figura 8: tensão em cada canal do osciloscópio

Figura 9: curvas de "Breakdown"

Capítulo 3

Modelo Teórico

Foi desenvolvido um modelo teórico simples de arco para a tocha de plasma, principalmente para determinar a curva característica teórica da descarga. O modelo é baseado na teoria da dinâmica de gases unidimensional e tem como dados de entrada as propriedades termodinâmicas e de transporte da mistura, fluxo de gases e material dos eletrodos, como dados de saída: tensão; corrente; diâmetro do arco; pressão de estagnação; temperatura do arco e do gás e número de Mach¹.

A figura 10 compara as curvas características obtidas para os três catodos com a curva do modelo teórico. Na região de baixa corrente, I < 10A, a tensão é alta, caracterizando o modo "glow" de operação¹, porém na região de alta corrente, I > 15A, a tensão é baixa, caracterizando o modo de arco¹. Para correntes de até 10A a tensão varia de 500V a 100V, a partir de 15A a tensão varia de 50V a 30V. Comparando uma curva teórica padrão com os dados experimentais é possível observar que o modelo esta adequado aos dados experimentais, na figura 10(b) somente as barras de erro típica foram mostradas. O catodo de 1/4" apresenta tensões em media 5V maiores que os demais catodos. A figura 11 mostra a velocidade e a temperatura da tocha de plasma em função da corrente elétrica, obtidas a partir do modelo teóricos e na ausência de dados experimentais de temperatura e velocidade estes dados são boas estimativas para serem utilizadas nos cálculos via códigos cinéticos e de equilíbrio.

Figura 10: (a) curva característica da descarga, (b) zoom da região de alta corrente com barras de erro típica.

Figura 11: velocidade e temperatura da tocha de plasma em função da corrente elétrica

3.1 Equilíbrio Termodinâmico da Descarga

Numa terceira etapa do trabalho, iniciaram-se os estudos de equilíbrio termodinâmico da descarga, considerando a descarga de N₂ e NF₃ (com o N₂ sendo admitido no canhão e o NF₃ injetado na tocha) de interesse no crescimento de filmes superduros. Neste estudo foi considerada a reação α (N+N₂) + β NF₃ = Produtos. Um possível esquema para a dissociação do NF₃ é apresentado na figura 12.

Figura 12: dissociação do NF₃

Foram consideradas 14 espécies químicas diferentes para o sistema N/F e para cada uma destas espécies é necessário conhecer as propriedades termodinâmicas, calor de formação, entalpia e entropia em função da pressão.

Para obter as frações molares de equilíbrio utilizamos o programa *Stanjan*⁴, desenvolvido pelo Prof. Dr. Wn. C. Reynolds da Universidade de Stanford e que utiliza o método do potencial do elemento para a minimização da energia livre de Gibbs. Este programa calcula:

- Condições de equilíbrio para processos adiabáticos a pressão e volume constante.
- Temperatura de combustão e
- Condições de detonação de Chapman-Jouquet.

Considerando uma temperatura do gás de 2000K e pressão de 50mbar e diferentes fluxos de N₂ e NF₃, valores de α e β , foram determinadas as frações molares de equilíbrio e apresentadas na figura 13.

Figura13: frações molares de equilíbrio em função da razão de fluxo de gás.

3.2 Cinética de Reação

Para deposição de filmes finos por meio de deposição a partir da fase de vapor, o entendimento do processo químico é essencial³. Isto requer o conhecimento das reações químicas entre as diversas espécies presentes na fase gasosa e as taxas nas quais as reações ocorrem. Isto pode ser obtido de duas formas: experimentalmente ou através de cálculos teóricos, e estas taxas são normalmente expressas na forma de Arrhenius, $k = AT^n \exp(-E_a/RT)$. O conjunto de reações compõe o mecanismo cinético.

Foi desenvolvido um mecanismo cinético composto por 10 espécies e 21 reações para o sistema N/F. A tabela 4 ilustra as espécies e reações consideradas.

Espécies consideradas					
F2	N N2			N3	NF
NF2	NF3	N2F2		N2F4	
	Reações considerada	IS	А	n	Ea
1	F+F=F2		3.25E+08	1.0	-6339.2
2	F+N3=NF+N2		1.21E+12	0.0	0.0
3	N+N=N2		5.01E+14	0.0	-1000.0
4	N+NF2=NF+NF		2.77E+12	0.0	0.0
5	N2F4=NF2+NF2		1.39E+15	0.0	19852.0
6	NF+NF=F+F+N2		2.50E+13	0.0	0.0
7	NF2+NF2=NF3+NF		1.00E+12	0.0	36950.0
8	N+N3=N2+N2		8.43E+13	0.0	0.0
9	N3+N3=N2+N2+N2		8.43E+11	0.0	0.0
10	NF+N2F2=NF2+N2+F		1.21E+12	0.0	0.0
11	NF+NF2=N2F2+F		1.45E+12	0.0	0.0
12	NF3+F=NF3+F		1.48E+02	3.0	21713.0
13	NF3+F=NF2+F2		3.60E+11	1.8	37903.0
14	NF3+N=NF2+NF		1.71E+07	2.0	30043.0
15	NF3=NF2+F		4.01E+14	0.3	7200.6
16	NF2+F=NF+F2		5.16E+07	1.9	54598.0
17	NF2+F=NF2+F		9.19E+09	0.8	36471.0
18	NF2=NF+F		1.75E+14	0.3	23432.0
19	NF+F=N+F2		4.28E+08	-0.2	42054.0
20	NF+F=NF+F		2.89E-03	2.8	26154.0
21	NF=N+F		3.68E+13	0.2	171450.0

TT 1 1 4		• • •		• .	3 T/T
Tabela A.	Mecanis	mo cinético	nara	sistema	N/H
$1 a 0 0 a \tau$.	Triccams		Dara U	SIStema	$\pm N/1$

O código cinético utilizado foi o ChemKin⁵, versão 2, e foram obtidas as fração molares da mistura em função do tempo de residência considerando a mesma pressão e temperatura utilizadas no código de equilíbrio. A figura 14 ilustra um caso típico para o sistema, considerando o fluxo de N_2 de 7.5slm e de NF₃ de 50sccm.

Figura 14: Frações molares obtidas do código cinético em função do tempo de residência.

Para condições típicas da tocha de plasma o tempo de residência é de 25μ s, que não é suficiente para atingir a condição de equilíbrio. A figura 15 mostra as frações molares em função da razão do fluxo de gás para o tempo de 25μ s.

Figura 15: Fração molar em função da razão do fluxo de gás para o tempo de residência de 25µs.

As frações molares obtidas pelo código cinético foram comparadas com as obtidas pelo código de equilíbrio e são apresentadas na figura 16. Nesta figura é possível observar que espécies como o nitrogênio molecular (N₂) e os átomos de flúor e moléculas de flúor (F₂) estão numa condição de equilíbrio, sugerindo que a reação global para a dissociação do NF₃ deva ser: NF₃ = $\frac{1}{2}N_2 + F + F_2$

Figura 16: Razão entre as frações molares obtidas pelo código cinético e de equilíbrio em função das razões do fluxo de gás.

Conclusão

Durante o primeiro ano do trabalho iniciado em agosto de 2004 foi remontado o sistema de vácuo que estava desativado, com a inclusão de uma bomba "roots" e medidores de pressão deste a faixa de 2atm até 10⁻³mbar. O sistema de vácuo foi caracterizado através das curvas de pressão em função do tempo e apresentadas no relatório anterior. Na segunda fase do trabalho iniciado em agosto de 2005, o sistema elétrico da tocha de plasma foi modificado, com a alteração do filtro RLC. Com o sistema de vácuo funcionando e o novo circuito elétrico instalado, iniciou-se os disparos da tocha de plasma, considerando três configurações diferentes de catodos para um mesmo anodo.

Após os disparos pode-se observar que ocorre um aumento de pressão quando existe a descarga elétrica, e este aumento é maior para o catodo de maior diâmetro, este fato foi previsto teoricamente.

Um modelo teórico baseado na teoria da dinâmica de gases unidimensional foi desenvolvido para determinar a curva característica teórica da descarga tendo como dados de entrada as propriedades termodinâmicas e de transporte da mistura, fluxo de gases e material dos eletrodos e como dados de saída: tensão; corrente; diâmetro do arco; pressão de estagnação; temperatura do arco e do gás e número de Mach.

Comparando uma curva teórica padrão com os dados experimentais foi possível observar que o modelo esta adequado aos dados experimentais. Outros dados obtidos foram a velocidade e a temperatura da tocha de plasma em função da corrente elétrica e na ausência de dados experimentais de temperatura e velocidade estes dados são boas estimativas para serem utilizadas nos cálculos via códigos cinéticos e de equilíbrio.

Numa terceira etapa do trabalho, iniciaram-se os estudos de equilíbrio termodinâmico da descarga, considerando a descarga de N₂ e NF₃ (com o N₂ sendo admitido no canhão e o NF₃ injetado na tocha) de interesse no crescimento de filmes superduros. Neste estudo foi considerada a reação α (N+N₂) + β NF₃ = Produtos, considerando 14 espécies químicas diferentes para o sistema N/F e para obter as frações molares de equilíbrio utilizamos o programa *Stanjan*. Em seguida foram determinadas as frações molares de equilíbrio em função da razão de fluxo de gás.

Foi desenvolvido um mecanismo cinético composto por 10 espécies e 21 reações para o sistema N/F e utilizado o código cinético ChemKin, versão 2, foram obtidas as fração molares da mistura em função do tempo de residência considerando a mesma pressão e temperatura utilizadas no código de equilíbrio. As frações molares obtidas pelo código cinético foram comparadas com as obtidas pelo código de equilíbrio, permitindo observar que espécies como o nitrogênio molecular (N₂) e os átomos de flúor e moléculas de flúor (F₂) estão numa condição de equilíbrio, sugerindo que a reação global para a dissociação do NF₃ deva ser: NF₃ = $\frac{1}{2}N_2 + F + F_2$.

Para a continuação do trabalho está sendo comprada uma carga resistiva de 10Ω e 25kW para diminuir o superaquecimento e aumentar o tempo de funcionamento da tocha de plasma.

Referências Bibliográficas

- 1. Barreto P.R.P., Desenvolvimento De Uma Tocha De Plasma De Baixa Potência Para Sintetização De Filmes De Diamantes. Tese de doutorado, ITA, São José dos Campos.
- Barreto P.R.P., Hinckel J.N., Termodinâmica de Gases a Altas Temperaturas e Misturas Quimicamente Reagentes.
- Barreto P.R.P., Sintetização de Materiais Super Duros. Universidade de Stanford, Stanford, CA, EUA.
- 4. Wn. C. Reynolds, comunicação particular, 2000.
- 5. R. J. Kee and F. M. Rupley and J. A. Miller, *Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics*, Sandia National Laboratories, 1990, SAND89-8009.